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Abstract

In this paper, we present a segmentation
system for German texts. We apply con-
ditional random fields (CRF), a statistical
sequential model, to a type of text used in
private communication. We show that by
segmenting individual punctuation, and by
taking into account freestanding lines and
that using unsupervised word representa-
tion (i.e., Brown clustering, Word2Vec and
Fasttext) achieved a label accuracy of 96%
in a corpus of postcards used in private
communication.

1 Introduction

In tokenisation and sentence segmentation, a text
is segmented into tokens and sentences. Word and
sentence segmentation are the core components of
NLP pipelines. Based on text segmentation, part
of speech (POS) tagging and parsing, among other
tasks, are performed.

In German texts, segmentation is de facto to clas-
sify sentence punctuation, such as periods, question
marks and exclamation marks, into two categories:
(A) the ends of sentences, and (B) others, such as
components of abbreviations (e.g. evtl., eventuell
‘possibly’), proper names (e.g. Sat.1), numbers
(e.g., 13.000) and so on. In the case of (A), the
punctuation is separated from space-delimited to-
kens and analysed as individual tokens. In the case
of (B), the punctuation constitutes a token with the
preceding characters. Therefore, space-delimited
tokens are not segmented further. In rare cases,
punctuation that is used to mark the end of a sen-
tence (i.e., category [A]) is a part of the token (i.e.
category [B]) at the end of a sentence.1

Traditionally, German text segmentation sys-
tems are based on rules that contain a list

1For instance, 176 (0.18%) in 95.595 sentences belong to
the third category in TüBa10. An example is usw. at the end
of a sentence.

of abbreviations.2 A rule-based approach to
the segmentation of German texts (Remus et
al., 2016; Proisl and Uhrig, 2016) is reason-
able considering the complexity of the task.
In a newspaper corpus (Tübinger Baumbank
des Deutschen/Zeitungskorpus (Tüba-D/Z) v. 10,
henceforth TüBa10, there are 1.787.801 tokens and
95.595 sentences, described in Telljohann et. al
(2012)), about 91% of sentence boundaries are
punctuation such as periods, colons, semicolons
and commas (Table 1). The remaining sentences
end with a word. As expected, periods are the
most frequently used at the ends of the sentences in
TüBa10 (about 77%, cf. Table 1). Most of the peri-
ods (about 84% of all periods) are used to mark the
end of a sentence (Table 1). The remaining periods
are parts of tokens (i.e., category [B]), of which 68
types are identified in the corpus. If we exclude
token types that we can simply handle with regular
expressions – that is, those with an alphabet, num-
ber, email address, web link and ellipsis – there are
27 types of abbreviations and proper names. These
exceptions can be handled reasonably by listing the
abbreviations and proper names.3

However, the task of text segmentation is not
trivial if we address the following dependencies
(Palmer, 2000): 1) language dependence, 2) corpus
dependence and 3) application dependence. Thus,
the segmentation of multi-lingual texts (Jurish and
Würzner, 2013; Kiss and Strunk, 2006) is not rule-
based but statistical. Corpus dependence involves a
wide range of text types that have various linguistic
features. Lastly, the definitions of words and sen-
tences depend on the NLP application: for example,
in a machine translation, a German compound is
better split into individual morphemes (El-Kahlout

2Helmut Schmid’s tokenizer in TreeTagger: http:

//www.cis.uni-muenchen.de/˜schmid/tools/TreeTagger/;
Stefanie Dipper’s system: https://www.linguistics.

ruhr-uni-bochum.de/˜dipper/resources/tokenizer.html
3However, lists of abbreviations are never complete, and

need to be extended, when we use out-of-domain data.



Last tokens of sentences ranking:tokens (frequency, %)
1:Period (73904, 77.31%), 2:double quotation (3849, 4.03%), 3:question mark (2921, 3.06%), 4:colon (2369, 2.48%), 5:exclamation mark (682, 0.71%), 6:semi-
colon (634, 0.66%), 7:parentheses(393, 0.41%), 8:ellipsis (329, 0.34%), 11:guillemet (59, 0.06%), 21:comma (26, 0.03%), 22:square bracket(26, 0.03%), 25:hypen
(24, 0.03%), 37:single quote (18, 0.02%), 212:slash (6, 0.01%), else (10355, 10.83%)
Ambiguity of punctuations tokens(A: frequency of case (A), the total number of the character, AMB(iguity):A/total(%)
Period (A:73904 + 329*3, total:88938, AMB:84.20%), double quotation (A:3849, total:42468, AMB:9.06%), question mark (A:2921, total:3536, AMB:82.60%),
colon (A:2369, total:11522, AMB:20.56%), exclamation mark (A:682, total:1424, AMB:47.89%), semicolon (A:634, total:, AMB:%), parentheses (A:393, to-
tal:5999, AMB:6.55%), guillemets (A:59, total:369, AMB:15.98%), comma (A:26, total:102425, AMB:0.02%), square bracket (A:26, total:75, AMB:34.66%),
hypen (A:24, total:29863, AMB:0.08%), single quote (A:18, total:730, AMB:2.46%), slash (A:6, total:2065, AMB:0.29%)

Table 1: Use of punctuations (TüBa10)

and Yvon, 2010).
In this work, we focus on the development of a

German text segmentation system that deals with
the issue of corpus dependence in Palmer’s term.
More specifically, it has been observed - e.g. by
Giesbrecht and Evert (2009) for part-of-speech-
tagging and by Gildea (2001) for parsing - that
a statistical model usually works for the domain
and text types it has been trained for, but leaves
to desire when applied to other domains and text
types. In this work, we undertake domain adapta-
tion in text segmentation, in particular, with a target
domain - texts written in private communication.
Typically, these texts contain many deviations from
standard orthography, including idiosyncrasies in
capitalisation and punctuation.

In this paper, we train text segmentation models
(conditional random fields) on TüBa10 (Section 4)
and test them on an example of a text used in pri-
vate communication: a postcard corpus4 (Ansicht-
skartenkorpus, ’picture postcard corpus’, hence-
forth ANKO) (Section 5). Sections 2 and 3 provide
the analysis of the use of punctuation in private
communication, and describe our text segmenta-
tion system.

2 Use of Punctuation

In German, punctuation segments a text into sen-
tences, and a sentence is segmented into words
by spaces. However, these rules of thumb are not
applicable in the following cases of sentence seg-
mentation: (1) punctuation that is a part of a token
with preceding characters (e.g., abbreviations); and
(2) punctuation is absent. Case (1) was discussed in
Section 1. Case (2) occurs because of freestanding
lines. Freestanding lines typically end with a line
break with a wide blank space or extra line spacing,
and often do not end with a punctuation. Exam-
ples are titles, subtitles, addresses, dates, greetings,
salutations and signatures (Official German Orthog-

4The corpus will be released in https:
//linguistik.zih.tu-dresden.de/
ansichtskarten.

raphy, 2006). In private communication, the rules
for freestanding lines are also applied to the end
of paragraphs. In addition, the following usage is
common to the punctuation in a private commu-
nication: (a) repeated punctuation (e.g. , !!!, ???,
......) in order to emphasise words, phrases and
sentences; and (b) the use of emotional pictograms
that are typically composed of punctuation (e.g. :),
;-)) (cf. Bartz et. al (2013)).

3 Conditional Random Fields
(CRF)-Based Text Segmentation

We develop a CRF-based German text segmenta-
tion system that can be applied to the types of texts
used in private communication (cf. Section 2). We
focus on tokenisation with punctuation and sen-
tence segmentation. In this section, we briefly in-
troduce CRF and define the notion of a sequence
and a set of features used in the task.

3.1 Conditional Random Fields
CRF (Lafferty et al., 2001; Sutton and McCallum,
2011) is a random field (also known as undirected
graph or Markov network) for conditional proba-
bility P(y1:n|x1:n), where x1:n is an input sequence
x1 . . .xn and y1:n is an output sequence y1 . . .yn. To
calculate the conditional probability, CRF makes
use of the maximum entropy model and normalizes
the probability globally in a sequence:

P(y1:n|x1:n) =
1

Z(x1:n)
exp

(
N

∑
n=1

D

∑
d=1

wd fd(x1:n,yn,yn−1,n)

)

Z(x1:n) = ∑
y1:n

exp

(
N

∑
n=1

D

∑
d=1

wd fd(x1:n,yn,yn−1,n)

)

3.2 Sequence
The CRF model learns the parameters and decodes
the output based on a given sequence of input units.
In our classification task, a text is a sequence of
input units. We use the term unit to denote each
atomic element in the CRF in order to differentiate



it from the term token or word. We create units by
splitting texts using white spaces and by separating
punctuation from the attached characters. We then
classify the input units into three categories: the
beginning (B), intermediate (I) and end (E) of sen-
tences. Using this notation, the chunk of a token is
also marked.

We investigate how flexibly punctuation should
be handled in order to be robust for domain dif-
ference, and the importance of punctuation in text
segmentation. To this end, we create three types of
sequences by deliberately handling the punctuation
listed in Table 1 in the following three ways:
(a): Punctuation before a white space is regarded

as a unit. For example, z.B. (abbreviation of
zum Beispiel ‘for example’) consists of two
units: z.B and .

(b): Punctuation is regarded as a unit regardless of
a white space. Accordingly, z.B. consists of
four units: z, ., B and .

(c): All punctuation is removed if it is followed by
a white space. Accordingly, z.B. consists of
one unit: z.B

Variant (a) is a setting in which the white space
is well placed, and it follows standard German or-
thographic rules. In Variant (b), every punctuation
mark is individually handled, which is expected to
provide flexibility in orthographical deviations. In
Variant (c), punctuation is missing in the input text.

3.3 Features

Features are key linguistic indicators that may be
useful in the segmentation of sentences. In this
work, we use three types of features to handle or-
thographic variations and unknown words in vari-
ations of types of text: forms, POS and unsuper-
vised word representations. The following subsec-
tions describe each feature in detail (Table 2 in
Appendix).

Form Forms of units are integrated as three fea-
tures: (1) unit, (2) character types of unit and (3)
normalised unit. For the first feature, units are ex-
tracted as they are. In the second feature, units
are categorised into alphabetic, numeric, types of
special characters, and their combinations. For the
third feature, units are changed to lower case.

Part of speech POS is used as a feature in two
ways: fine-grained original Stuttgart-Tübingen-
TagSet (STTS, Schiller et. al (1999)) or coarse POS

(CPOS), which are shown in Table 2. These two
features are extracted automatically using the Tree-
Tagger (Schmid, 1999).

Brown clustering For the first feature of unsu-
pervised word clustering, the hierarchical classes
of Brown clustering (Brown et al., 1992) are ex-
ploited. Brown clustering is a bigram-based word
clustering that has been successfully integrated to
improve parsing (Koo et al., 2008), domain adapta-
tion (Candito et al., 2011) and named entity recog-
nition (Miller et al., 2004). We ran Brown cluster-
ing on the normalised tokens (i.e. all lower case) of
TüBa10 to build 100 clusters.5 For the features, we
used the first four digits and all digits in the cluster-
ing hierarchy. In the data, the grouping of named
entity such as person and organization and the part
of speech such as noun and verb were captured the
most clearly in the first four digits of the clustering.

Word2Vec For the second feature of unsuper-
vised methods, we used k-means clustering in
Word2Vec. Word2vec (Mikolov et al., 2013) is
another kind of word representation. We ran the
Word2Vec on the normalised tokens of TüBa10
to build the models.6 To operationalise the word-
embedding vectors, we further grouped them into
50 K-means clusters.7 The resulting clusters con-
tained a great deal of named entities.

Fasttext For the third feature of unsupervised
methods, we used k-means clustering in Fasttext.
Fasttext (Bojanowski et al., 2016) is yet another
kind of word representation that takes into account
character n-grams (morpheme). We ran Fasttext
on the normalised tokens of TüBa10 to build the
models.8 We further grouped them into 200 K-
means clusters that contained a large number of
German compounds.

4 Experiments

In this experiment, our goal was to develop a text
segmentation model that could robustly be applied
to domain difference. For the experiment, we used
the TüBa10 in form of (a), (b) and (c) (cf. Section
3.2) with various feature configurations, and we
trained and tested the CFG models using five-fold
cross-validation. In the next section, we evaluate

5We used the Brown clustering implemented by P. Liang
6For word2vec, we used gensim with parameters CBOW,

200 dimensions, context window 5
7For K-means clustering, we used the scikit-learn
8We used the fasttext with parameters, CBOW, 200 dimen-

sions, 5 context window, 5 word ngrams



the models by applying them to a postcard corpus
to test their robustness for texts generated in private
communications.

Single features In the experiment, we used data
in the forms of (a), (b) and (c) with single features.
First, we trained CRF models in context window
0. The results are shown in columns #1 to #12
of Table 3 in Appendix. Among the features, the
character type of unit (#3) - information about cap-
italisation, and type of punctuation and characters -
showed the best performances in sequence types (a)
and (b), whereas gold STTS POS tag (#4) showed
the best performance in (c). In the unsupervised
methods, Brown clustering (#8/9) outperformed
Word2Vec (#10) and Fasttext (#11). As expected,
the sequence types (a) and (b) achieved higher ac-
curacy than sequence (c) did. For the sequence type
(c), that is, the input sequence without punctuation,
all individual features did not predict the classes
(B) and (E). Thus, punctuation was proven relevant
in text segmentation. We extended the set of fea-
tures in context window 3. However, the accuracy
remained the same as in window 0.

Feature combinations To obtain linguistic infor-
mation effectively in wide contexts, we combined
the features in the following two ways: 1) the same
features in context 0 and 1; 2) the combination of
two features (1a/1b/1c/2bT/3a4/3b/3c) in context
0. In the first setting, which combined all with all
features of previous, current and next tokens, the
CRF models improved with regard to class (B) and
(E) (#13 in Table 3). In the second feature combi-
nation (#14), the overall accuracy was similar to
that in the set of all single features (#12).

For the evaluation, we trained all single features
in context 0 (#12), the combinations of the same
features in context window 1 (#13) and those of
various features in context window 0 (#14) without
using gold POS and CPOS tags. The CRF models
achieved accuracies of 0.99, 0.99 and 0.97 on the
TüBa in the sequence types (a), (b) and (c), respec-
tively. In the evaluation, we used the feature set for
each input sequence type.

5 Evaluation and Conclusion

For the evaluation, we used a test set derived from
a corpus of postcards (ANKO). The corpus com-
prised over 11,000 holiday postcards sent by post to
Swiss households from 1950 to the present day. In
this work, we used a sub-corpus (545 cards, 3534

sentences and 25096 tokens) that contained cards
mainly written in standard German. We manually
created three types of input sequences: (I) one with
text boundaries; (II) one with text and paragraph
boundaries; and (III) one with text, paragraph and
discourse boundaries (date, salutation, greeting and
signature). We tested the final models as described
in the previous section. The results are shown be-
low:

(I) (II) (III)
acc F1(B,I,E) acc F1(B,I,E) acc F1(B,I,E)

(a) .89 .73, .94,.72 .91 .80, .95, .77 .94 .88, .97, .84
(b) .91 .76, .95,.44 .93 .82, .97, .61 .96 .90, .98, .82
(c) .81 .30, .90,.42 .83 .40, .90, .55 .86 .50, .92, .73

Overall, the sequence type (b) achieved better
accuracy than sequence type (a) did, which showed
that orthographic deviations could be handled more
effectively by segmenting punctuation individually.
Clearly, the patterns of punctuation were more gen-
erally captured in (b). Furthermore, the input text
type (III) achieved high accuracy. These results
indicate that the annotation of a corpus with para-
graphs and freestanding lines is relevant in improv-
ing the quality of the segmentation of texts used in
private communication. Still, it was difficult to pre-
dict text segments without having punctuations (c)
on a type of text different from the training data.9

As comparison, we tested a sentence segmen-
tation system PUNKT (Kiss and Strunk, 2006).10

PUNKT is based on unsupervised methods and
designed for multi-lingual text segmentation. We
tested PUNKT on our ANKO test set type (III).
PUNKT achieved a F1 score of 0.79 with preci-
sion 0.71 and recall 0.9. In contrast, our sentence
segmentation system achieved a F1 score of 0.95
with precision 0.94 and recall 0.96, using the input
format (b) and (III), that is, the best input format
for tokenization.

In conclusion, we presented our German text
segmentation system for texts in private commu-
nication. In future work, we will extend our text
segmentation system on historical German texts.

Acknowledgments
This work has been funded under SNSF grant 160238. We
thank all the project members, Heiko Hausendorf, Joachim
Scharloth, Noah Bubenhofer, Nicolas Wiedmer, Selena Calleri,
Maaike Kellenberger, David Koch, Marcel Naef, Josephine
Obert, Jan Langenhorst, Michaela Schnick to support our

9Our text segmentation system (GETS) is available:
https://sugisaki.ch/tools

10We used the NLTK module PUNKT.



work. We thank two anonymous reviewers for their valuable
suggestions.

References
Thomas Bartz, Michael Beißwenger, and Angelika Storrer.

2013. Optimierung des Stuttgart-Tübingen-Tagset für
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6 Appendix

1a Unit
1b Character type of unit: unit form is categorised into the following classes: All

characters are alphabetic, and (A) consist of just one alphabet or (B) are absent
of vocal (e.g. lg,hrzl) or (C) all letters are uppercase or (D) only first letter is
uppercase or (E) else. Or all characters are (F) numbers or (G) alphanumeric.
For punctuations, (H) period, (I) comma, (J) question and exclamation mark, (K)
colon and semicolon, (L) opening and (M) closing bracket, (N) opening and (O)
closing quotation. For mix classes: (P) alphabets and punctuations/other special
characters (e.g. u.s.w, v.a), (Q) numbers and punctuations/other special characters
(e.g. 8.000), or (R) else.

1c Normalized unit: all lower case
2a Fain-grained POS: STTS tag set; In experiment, 2aG is gold standard, 2aT is

TreeTagger output
2b Coarse POS: Nouns, verbs, modifiers of nouns, modifiers of verbs, relative pro-

nouns, other pronouns, articles, prepositions, postpositions, cardinal number, wh
words, subordinating/infinitive conjunctions, coordinating conjunctions, spoken
language markers, comma and semicolon, colon, period and question and excla-
mation mark, quotations, brackets, else; In experiment, 2bG is gold standard, 2bT
is based on TreeTagger output

3abc Unsupervised methods: Brown clustering, word2vec and fasttext, respectively.
In the experiment, brown clustering is used in 4 digits (3a4) and all digits (3aA)

Table 2: Features



# 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1a 1b 1c 2aG 2aT 2bG 2bT 3a4 3aA 3b 3c all all all

single features in context window 0 combinations
(a) acc:.97*

F1(B):.86
F1(I):.99*
F1(E):.86

acc:.97*
F1(B):.82
F1(I):.98
F1(E):.84

acc:.97*
F1(B):.88*
F1(I):.99*
F1(E):.88*

acc:.96
F1(B):.81
F1(I):.98
F1(E):.83

acc:.97*
F1(B):.83
F1(I):.98
F1(E):.85

acc:.96
F1(B):.81
F1(I):.98
F1(E):.82

acc:.97*
F1(B):.83
F1(I):.98
F1(E):.85

acc:.97*
F1(B):.84
F1(I):.98
F1(E):.85

acc:.97*
F1(B):.81
F1(I):.98
F1(E):.83

acc:.91
F1(B):.47
F1(I):.95
F1(E):.49

acc:.89
F1(B):.08
F1(I):.94
F1(E):.11

acc:.98
F1(B):.91
F1(I):.99
F1(E):.92

acc:.99
F1(B):.96
F1(I):1.00
F1(E):.96

acc:.98
F1(B):.91
F1(I):.99
F1(E):.91

(b) acc:.97*
F1(B):.82
F1(I):.98*
F1(E):.83

acc:.96
F1(B):.79
F1(I):.98*
F1(E):.81

acc:.97*
F1(B):.85*
F1(I):.98*
F1(E):.85*

acc:.96
F1(B):.79
F1(I):.98*
F1(E):.81

acc:.97*
F1(B):.81
F1(I):.98*
F1(E):.83

acc:.96
F1(B):.79
F1(I):.98*
F1(E):.81

acc:.97*
F1(B):.81
F1(I):.98*
F1(E):.84

acc:.97*
F1(B):.82
F1(I):.98*
F1(E):.84

acc:.96
F1(B):.79
F1(I):.98*
F1(E):.81

acc:.91
F1(B):.45
F1(I):.95
F1(E):.48

acc:.89
F1(B):.08
F1(I):.94
F1(E):.10

acc:.98
F1(B):.89
F1(I):.99
F1(E):.90

acc:.99
F1(B):.95
F1(I):.99
F1(E):.96

acc:.98
F1(B):.88
F1(I):.99
F1(E):.90

(c) acc:.88
F1(B):.00
F1(I):.93
F1(E):.00

acc:.88
F1(B):.00
F1(I):.93
F1(E):.00

acc:.88
F1(B):.00
F1(I):.94*
F1(E):.00

acc:.89*
F1(B):.21*
F1(I):.94*
F1(E):.22*

acc:.88
F1(B):.00
F1(I):.93
F1(E):.00

acc:.88
F1(B):.02
F1(I):.93
F1(E):.03

acc:.88
F1(B):.00
F1(I):.93
F1(E):.00

acc:.88
F1(B):.00
F1(I):.93
F1(E):.00

acc:.88
F1(B):.00
F1(I):.93
F1(E):.02

acc:.88
F1(B):.00
F1(I):.93
F1(E):.00

acc:.88
F1(B):.00
F1(I):.93
F1(E):.00

acc:.96
F1(B):.82
F1(I):.98
F1(E):.85

acc:.97
F1(B):.86
F1(I):.98
F1(E):.89

acc:.96
F1(B):.81
F1(I):.98
F1(E):.83

Table 3: Feature experiments (5-fold cross validation on TüBa10): abbreviations of features listed in TB 2; sequence type (a)(b)(c)

described in Section 3.2; acc(uracy) = correctly predicted tokens/the total number of tokens; F1 = 2 * precision * recall/(precision +

recall)


